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1. Introduction

A submanifold N in a Kaehler manifold M is called a CR-submanifold if (1)
the maximal complex subspace D, of the tangent space T,M containing in
T.N, x € N, defines a differentiable distribution on N, and (2) the orthogonal
complementary distributiion D+ of D is a totally real distribution, i.e., JD} C
T N, x € N, where J denotes the almost complex structure of M, and T N
the normal space of N in M at x.

In the first part of this series, we have obtained several fundamental results
for CR-submanifolds. In the present part, we shall continue our study on such
submanifolds. In particular, we prove that (a) the holomorphic distribution )
of any CR-submanifold in a Kaehler manifold is minimal (Proposition 3.9); (b)
every leaf of the holomorphic distribution of a mixed foliate proper CR-sub-
manifold in a complex hyperbolic space H™ is Einstein-Kaehlerian (Proposi-
tion 4.4); and (c) every CR-submanifold with semi-flat normal connection in
CP™ is either an anti-holomorphic submanifold in some totally geodesic
CP"*P of CP™ or a totally real submanifold (Theorem 5.11).

2. Preliminaries
Let M™ be a complex m-dimensional Kaehler manifold with complex
structure J, and N be a real n-dimensional (# = 2) Riemannian manifold
isometrically immersed in M™. We denote by ¢, ) the metric tensor of M™ as
well as that induced on N. Let ¥ and ¥ be the covariant differentiations on N
and M respectively. Then the Gauss and Weingartan formulas for N are given
respectively by

(2.1 VY = V¥ +o(X,Y),
(2.2) 5;(5 = —A5X+ nga
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for any vector fields X, Y tangent to N, and £ normal to N, where o is the
second fundamental form, and D the normal connection,
For any vector X tangent to N and £ normal to N we put

(2.3) JX = PX + FX,

(2.4) JE= 1k + f

where PX and t¢ (respectively, FX and f£) are the tangential (respectively,
normal) components of JX and J¢ respectively.

In the following we shall denote by M™(c) a complex m-dimensional
complex-space-form of constant holomorphic sectional curvature c. We have

R(X,Y)Z=5{Y, Z)X — (X, Z)Y +{JY, Z)JX

(2.5) —(JX, ZYJY + U X, JY)JIZ}.

We denote by R and R+ the curvature tensors associated with v and D
respectively. A submanifold N is said to be flat (respectively, to have flat
normal connection) if R =0 (respectively, R"=0). For any vector fields
X, Y, Z, W in the tangent bundle TN, and £, 5 in the normal bundle T+ N, the
equations of Gauss, Codazzi and Ricci are given respectively by
R(X,Y; Z,W)=R(X,Y; Z,W) + (o( X, W), 0(Y, Z))

—(o(X, Z), (Y, W)),
R(X,Y; Z, &) =(Dyo(Y, Z) — o(VyY, Z) — o(Y, V4 Z), £
—(Dyo(X, Z) — o(VyX, Z) — 6(X, VyZ), £),
(28) R(X,Y;¢&m) =R (X,Y;6m) — ([4, 4,] X, 7,

(2.6)

(2.7)

where R(X,Y; Z, W) ={R(X,Y)Z, W), - -, etc.

Definition 2.1. A submanifold N of a Kaehler manifold M is called a
CR-submanifold if there is a differentiable distribution @: x - %, C T, N on N
satisfying the following conditions:

(a) 9 is holomorphic, i.e., J, = D, for each x € N, and

(b) the complementary orthogonal distribution 9+ : x — D C TN is tot-
ally real, i.e., JO; C T;" N for each x € N.

If dim 9 = 0 (respectively, dim @, = 0), N is called a complex (respectively,
totally real) submanifold. A CR-submanifold is said to be proper if it is neither
complex nor totally real.

For a CR-submanifold N we shall denote by » the orthogonal complemen-
tary subbundle of JD* in T N. We have

(2.9) T*N=JD"®», v.=T-NNJTLN).
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A subbundle g of the normal bundle is said to be parallel if D, ¢ € u for any
vector X € TN and section £ in u. '

A CR-submanifold N in a Kachler manifold M is said to be anti-holomor-
phic if T-N =JD;, x € N.

3. Some basic lemmas

First we recall some basic lemmas for later use.
Lemma 3.1 [4]. Let N be a CR-submanifold of a Kaehler manifold M. Then
we have

(3.1) (VyZ, Xy= (JA,,U, XY,
(3.2) A, W=A,,Z,
(3.3) A X = -A,JX

for any vector fields U tangent to N, X in D, Z, Win D", and £ in v.

Lemma 3.2 [4]. The totally real distribution D~ of any CR-submanifold in a
Kaehler manifold is integrable.

Lemma 3.3 [11,[2),14]. Let N be a CR-submanifold of a Kaehler manifold M.
Then the holomorphic distribution ) is integrable if and only if
(3.4) (o(X,JY),JZ)= (o(JX,Y), JZ)
for any vectors X, Y in 9, and Z in D+ .

Lemma 3.4 [2]. Let N be a CR-subr~namfold in a Kaehler manifold M. Then
the leaves of D™ are totally geodesic in M if and only if

(3.5) (o(D, DY), JD* )= {0).

Lemma 3.5. Let N be a CR-submanifold in a Kaehler manifold M. We have
the following statements:
(a) If the leaves of D are totally geodesic in M, then

(3:6) o(D, D7) = (0}, (o(D, D), JD )= {0},
(3.7) Hy(X,Z) =2llo(X, Z)*+ 2(A4,,JX, JA,, X}

for any unit vectors X in D, and Z in D+, where H g denotes the holomorphic
bisectional curvature of M.

(b) If (3.6) holds, the leaves of D+ are totally geodesic in M.

Proof. Let N be a CR-submanifold in a Kaehler manifold M. Then D* is
integrable (Lemma 3.2). Let N* be a leaf of D~ . We denote by o and ¢” the
second fundamental form of N1 in M and N, respectively. We have

o (Z, W) =" (Z,W) + o(Z, W)
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for any vectors Z, W in D" . Thus, by Lemma 3.4, the leaves of 9~ are totally
geodesic in M, if and only if (3.6) holds.

Assume that the leaves of 9~ are totally geodesic in M. For any vector fields
X, Yin D and Z, Win 9, equation (2.7) of Codazzi and (3.5) give

R(X,Y; Z,JW) =(Dyo(Y, Z) — o(Y,VyZ), JW)
—(Dyo(X,Z)—o(X,VyZ), IW),
= <0(Xs Z)’ J%YW>— <0(Y5 Z)’ JeXW>
Ay X, VyZ)— (AY, VxZ)
={o(X, Z), Jo(Y, W)= (o(Y, Z), Jo( X, W))
AW X, VyZ)y— (A Y, VxZ).
Thus by applying (3.5) and Lemma 4.1 we find
R(X,Y;Z,JW) = (o(X, Z),s(JY,W))— (o(Y, Z), o(JX, W))
Ay X, JA;ZY )= (A Y, JA;2 X),
from which we obtain (3.7).

Corollary 3.6. Let N be a proper anti-holomorphic submanifold in CP"*?. If
the leaves of D are totally geodesic in CP"*P, then the holomorphic distribution
is not integrable.

This corollary follows from Lemmas 3.4 and 3.5.

For the holomorphic distribution D, we have

Lemma 3.7. Let N be a CR-submanifold in a Kaehler manifold M. Then

(1) the holomorphic distribution is integrable, and its leaves are totally geodesic
in N if and only if
(3.8) (o(D, D), JD* )= {0},

(2) the holomorphic distribution is integrable, and its leaves are totally geodesic
in M if and only if
(3.9 a(%D, D) = {0}.

Proof. Let N be a CR-submanifold in a Kaehler manifold M. If (3.8) holds,

then also (3.4). Thus the holomorphic distribution P is integrable (Lemma 3.3).
Moreover, from (2.1), (2.2) and (2.3) we have

(VxZ, JY)=(VxZ,JY)= <(VyxJZ,Y)
= (A4, X, YY= ~({o(X,Y),JZ)=0
for any vector fields X, Y in %, and Z in 9. Thus the leaves of 9 are totally

geodesic in N. The converse of this has been proved in [4].
Statement (2) follows from statement (1) and the following identity

o’(X,Y)=0'(X,Y)+ 0o(X,Y)
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for any vectors X, Y in D, where o’ and o7 are the second fundamental forms
of any leaf N7 of ) in N and M respectively.

Let JC be a differentiable distribution on a CR-submanifold N (3C: x —» I,
C T.N,x € N). Weput
(3.10) (X, Y)=(v,Y)"

for any vector fields X, Y in JC, where (VY )" denotes the component of VY
in the orthogonal complementary distribution JC* in N. Then the Frobenius
theorem gives the following

Lemma 3.8. The distribution 3( is integrable if and only if 6 is a symmetric on

IC x IC.
Let X|,- - -, X, be an orthonormal basis in 3. We put

A== 3 (X, X).
i=1

Then H is a well-defined vector field on N (up to sign). We call H the
mean-curvature vector of the distribution 3C.

A distribution 3 on N is said to be minimal if the mean curvature vector H
of J( vanishes identically, and JCis said to be totally geodesic if ¢ = 0.

Proposition 3.9. Let N be a CR-submanifold of a Kaehler manifold M. Then

(a) the holomorphic distribution %) is minimal, and

(b) the distribution 0 is totally geodesic if and only if D is integrable, and its
leaves are totally geodesic in N.

Proof. Let N be a CR-submanifold of a Kaehler manifold M. For any
vector fields X in 9D, and Z in D, Lemma 3.1 gives

(3.11) (Z,VyX)= (A, X, JX).
Thus we have |

(3.12) (Z,VxJX)= (A, X, JX).
Combining (3.11) and (3.12) we obtain

(3.13) (VxX + V3 JX, ZY=0.

This implies statement (a). Statement (b) follows from (3.10) and Lemma 3.8.

4. Mixed foliate CR-submanifolds
Definition 4.1. A CR-submanifold is said to be mixed totally geodesic if
o(D, D) = {0).
Definition 4.2. A CR-submanifold N in a Kaehler manifold M is said to be
mixed foliate, if it is mixed totally geodesic, and its holomorphic distribution is
integrable.
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In [2}, Bejancu, Kon and Yano proved that there is no mixed foliate proper
CR-submanifold in M™(c) with ¢>0. In [4] the author proved that a
CR-submanifold in C” is mixed foliate if and only if N is a CR-product (for
anti-holomorphic case, see [2]).

In this section, we shall study mixed foliate CR-submanifolds in a complex
hyperbolic space H™. For simplicity, we assume that H™ is a complex
m-dimensional complex hyperbolic space with constant holomorphic sectional
curvature —4.

Lemma 4.1. Let N be a mixed foliate CR-submanifold in H™. Then for any
unit vectors X € Dand Z € D+,

(4.1) NAXII =1,
(4.2) loll? = 2hp,
where h = dim¢ 9D, and p = dimg D~ . The equality sign in (4.2) holds if and
only if (a) the leaves of D* are totally geodesic in H™, and (b) Imo = JD*.
Proof. Let N be a mixed foliate CR-submanifold in ™. Then Lemma 9.1
of [4] gives
(4.3) Hy(X,Z)=-214,;XI7,
for any unit vectors X in ), and Z in 9~ . This gives (4.1).
Inequality (4.2) follows immediately from (4.1). From (4.1) it is clear that
loll = 2hp if and only if we have
(4.4) Imo =JD+ |
(4.5) A;qe D= {0).
The lemma thus follows from Lemma 3.5.
Let N be a mixed foliate CR-submanifold in H”, and N7 a leaf of the
holomorphic distribution 9. Then N7 is a Kaehler submanifold of H™. We
denote by o7, DT ---, etc. the second fundamental form, the normal connec-

tion,---, etc. for N7 in H™, and by o’, D’,---, etc. the corresponding
quantities for N7 in N. Then we have

(4.6) oT(X,Y)=0'(X,Y) +0o(X,Y)

for X, Yin TNT. For any Z in D~ , this implies

4.7) (ATX,Y)=(JoT(X,Y), JZY={(a(JX,Y),JZ)={A;;JX,Y),
(4.3) (A;ZX, YY=(o(X,Y),JZ)= (A4;2X, 7).

Because N is mixed foliate, these give

(4.9) ATX=A,,JX, AT, X=A,,X.
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Moreover, for any unit vector fields X in &), and Z in 9, we have that

(4.10) JVyZ=JZ=-4,,X+ D,JZ,
so that _

(4.11) DyJZ = FvZ.

From

VyJZ =-AT,X + D}JZ
we also get
(4.12) DYJZ =D,JZ.

Let 1 be any normal vector field in » (for the definition of », see (2.9)) and
X, Y any tangent vector fields in %, (2.5), (4.11) and (4.12) imply

(4.13) R(X,Y;JZ,3)=0,

(4.14) Ry (X,Y;JZ,q) =0.
Combining these with equation (2.7) of Codazzi we obtain

(4.15) [AfZ,Aﬂ =0 fornE€v,zEDP".

Because N7 is a Kaehler submanifold, 47, = JALT = -ATJ. Thus by using
(4.15) we have

0=AT,AT — ATAY, = J(ATAT, + AT, AT).

Since J is nonsingular, this gives

(4.16) ATAT, + AT, 4T = 0.
Combining (4.15) and (4.16) we have
(4.17) A;ZAg =0.

Because N is mixed foliate, 4,,%0 C 9 for any Z in D* . Thus using Lemma
4.1 and (4.9) we get

(4.18) lAZXI = 1147, X1 =1

for any unit vectors X in TN7, and Z in ™. By linearity, this implies
(4.19) (AfZX, AT YY=0

for orthogonal vectors X, Y in TN”. From (4.18) and (4.19) we find
(4.20) AL, AT, € € O(2h).

In particular, A7, is nonsingular. Thus we have, in consequence of (4.17),
AT = 0 for any vector 7 in ». Since N is mixed foliate, (2.1) and (2.2) give

-ATX + DIZ = vyZ = VyZ = -4, X + D}Z.
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from which we find D7Z = D} Z. This shows that the normal subbundle
6D+ |y is a parallel subbundle of the normal bundle of N7 in H™. Therefore we
have

(4.21) R+ (X,Y;Z,JW)=0

for any vector fields X, Y in TN7, and Z, W in GDJ_|NT. Let Z,,---,Z, be an
orthonormal basis of D, , x € N7, (2.5), (4.21) and the Ricci equation for N7
in H” give

(4.22) [4%,, 47, = 0fora#B,a,8=1,--,p.

Since A7,J = -JAY,, (4.20) shows that A7, has two eigenvalues 1 and -1
with the same multiplicity 2. We put

v,={XxeTN|47, X=X}
Thus, for any X € V|, (4.22) gives
AT, AL X = AL AT, X=A2 X, a=2,-,p.
Moreover, for any unit vector X in V|, (4.22) implies that AZX ,oo=2,--- plie

in ¥, which are orthonormal by (4.18). Consequently, we obtainp < A + 1.
From (4.22), we may also get

AZ AL + A7 A7 =0 fora+ .

From the equation of Gauss and (2.5), the sectional curvature K of N
satisfies
(4.23) K(X,Z)=-1+{(o(X, X),0(Z, Z))
for any unit vectors X in 9, and Z in . Since N is mixed foliate, we also

have
K(JX,Z)=-1-(o(X, X),0(Z, Z)).
Combining this with (4.23) gives
K(X,Z)+K(JX,Z) = -2.

By summarizing the above facts we can state the next lemma.

Lemma 4.2. Let N be a mixed foliate CR-submanifold in H™. Then

() DYJZ = DyJZ =FVyZ,

(b) DYZ = D4Z = —tDyJ Z,

() Imo” = Pt OID*,

(d) 43, 47, € O@2h),

@p<sh+1,

(D) AZ 45, + 45,47 =0,

(&) K(X,Z)+ K(JX, Z)= -2, for any unit vector field X in TNT, and
orthonormal vector fields Z, W in D+ .
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From Lemma 4.2 and Proposition 3 of {2] we have the following.

Lemma 4.3. Let N be a mixed foliate proper CR-submanifold of M™(c),
¢c# 0. Thenc <Qandp > 1. '

Proof. Let N be a mixed foliate proper CR-submanifold of M™(¢), ¢ # 0.
Then Proposition 3 of [2] implies ¢ < 0. If p = 1, then, for any unit vector field
Z in D, statement (b) of Lemma 4.2 implies DZ = D4Z = 0. Hence, Z is a
parallel normal vector field of the complex submanifold N7 in M™(c), ¢ < 0.
This contradicts a theorem of Chen and Ogiue [5].

Proposition 4.4. Let N be a mixed foliate proper CR-submanifold of H™.
Then

(a) each leaf NT of 0 lies in a complex (h + p)-dimensional totally geodesic
complex submanifold H**? of H™,

(b) each leaf N7 is an Einstein-Kaehler submanifold of H"*P with Ricci tensor
given by
(4.24) STX,Y)=-2(h+p+ I)X,Y),

Qh+1=p=22;h=2, and

(d) the leaves of D™ are totally geodesic in N.

Proof. Lemma 4.2 implies that the first normal space Im o7 is nothing but
DL @D . Since D" ®JD* is a parallel normal subbundle of the normal
bundle of N7 in H™, by a theorem of Chen and Ogiue [5], N7 lies in a complex
(h + p)-dimensional totally geodesic submanifold H"*? of H™. Thus (a) is
proved.

Since N7 is a Kaehler submanifold of H™, equation (2.8) of Gauss gives

ST(X,Y)=-2(h+ 1XX,Y)— 2 (4L X, 4L 1),

where £,’s form an orthonormal basis of 7+ N7. Thus by Lemmas 4.1 and 4.2
we obtain

ST(X, X)=-2(h+p+ IKX, X),
which implies (4.24).

If # = dim D = 1, then from statement (b) it follows that N7 is of constant
curvature —2( p + 2). Since N7 is a Kaehler submanifold of H™, a theorem of
Calabi [4] gives that p = 0. This is a contradiction. The remaining part of this
proposition follows from Lemmas 3.4 and 4.3.

Theorem 4.5. Let N be a mixed foliate CR-submanifold of H™. If dimg N <
5, then N is either a complex submanifold or a totally real submanifold.

This theorem follows immediately from statement (c) of Proposition 4.4.

Remark 4.1. The author believes that Theorem 4.5 holds for any mixed
foliate CR-submanifold of H™. However, he is unable to prove it at this
moment.
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5. Semi-flat normal connection

First we recall the following definition [6].

Definition 5.1. A CR-submanifold N in a complex-space-form M™(c) is
said to have semi-flat normal connection if its normal curvature tensor R
satisfies
(5.1) RH(X,Y; ¢,m) =$(X, PY)(JE, )
for any vectors X, Yin TN, and &, n in T+ N.

The main purpose of this section is to classify CR-submanifolds with
semi-flat normal connection.

Lemma 5.1. A CR-submanifold N in a complex-space-form M"™(c) has
semi-flat normal connection if and only if

(52)  ([4e 4,] X, V)= §{{UX, EXIY, m)— (JX, m)(JY, £)}

for any vectors X, Y in TN, and ¢, in T* N.

This lemma follows from Definition 5.1 and the equation of Riccei.

From Lemma 5.1 we obtain the following.

Lemma S5.2. Let N be a CR-submanifold with semi-flat normal connection in
M™(c). Then

(5.3) ([, 4,] X, Uy=0,
(54)  {([4e, 4| Z.Wy=${IZ, IW, m) — (JZ, q)(IW, £))

for any vectors Uin TN, Xin D, Z, Win D", and ¢, nin T+ N.

Moreover, we also have

Lemma 5.3. Let N be a CR-submanifold with semi-flat normal connection in
M"™(c). Then

(5.5) A5 = {0},
(5.6) (A;: D, 4,0 Y= {0},

where v, = T N N J(T+-N), x € N.
Proof. From Lemmas 3.1 and 5.2 we have

0= ([ A4 Ap] X, IX)= -1 4 TX 1> — | 4, X |I?

for any vectors X in 90, and £ in ». Thus we get (5.5). Formula (5.6) follows
from (5.4) and (5.5).

Lemma 5.4 is an immediate consequence of Lemma 5.3.

Lemma S.4. Let N be a CR-submanifold with semi-flat normal connection in
M™(c). If there is a & in v such that A§@¢: D, then N is mixed totally
geodesic.
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From Lemma 5.2 we have

Lemma 5.5. Let N be a CR-submanifold with semi-flat normal connection.
Then -

(5.7) 1A W2 =5+ (A;2Z, A, W)

for orthonormal vectors Z, W in D+ .
Proof. For orthonormal vectors Z and W in 9, Lemma 5.2 gives

§ = Asz, Apw)Z W)= (A, W, Ay Wy — Ay Z, Ay Wy,
Thus by using Lemma 3.1 we obtain (5.7).

Let N be a CR-submanifold with semi-flat normal connection in M™(¢). By
Lemma 5.3 we obtain 4,%) = {0}. Define an endomorphism

Ay DF - D2
by
(5.8) A,Z =427
for any vectors § in »_, and Z in @j .Then A ¢ is self-adjoint.
Let Aj,---,A, be the distinct eigenvalues of A,, and V),---, ¥, the corre-
sponding eigenspaces. Then we have
(5.9) D=V & - OV, (V,V,)=0 fori+#j.

Lemma 5.6. Let N be a CR-submanifold with semi-flat normal connection in
M™(c), ¢ % 0. Then, for any ¢ in v, /fg is proportional to the identity endomor-
phism.

Proof. Under the hypothesis, Lemma 5.2 implies

(5.10) (AW, A;,Y Y= (AY, A;, W)

for any vectors £ in », and Y, Z, W in . If A~£ is not proportional to the
identity endomorphism, r=2. Let Z=W=Z, €V, Y=Z, €V, for i #].
Then (5.10) and Lemma 3.1 imply

(5.11) (4,22, Z))=0.
By linearity we have
(5.12) (A;zVi, V)= {0} fori+].
Putting W= 2, €V, Y=2Z, € V,and Z = Z, € V, fori # j, (5.10) gives
AN {A;z,2;, Z;)= A A;22Z;, Z;) fori+],
which implies
(5.13) AV, CcDe V.
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On the other hand, by Lemma 5.3 we obtain
0=(A4;,X, 4, Z)= N (A Z;, X}

for any vectors X in 9, Z, € ¥}, and Z, € V,. This shows that 4, V; C D if
A; # 0. Combining this with (5.13) yields

(5.14) - A;zV; CV, wheneverA; #0.
From (5.12) and (5.14) we get
(5.15) A;zV;=0ifj#*iand A, # 0.

Since A, has at least two distinct eigenvalues, we may assume that A; # 0.
From (5.7) of Lemma 5.5 and (5.15) we have
(5.16) 0=114,7,2]ll =5+ (412,22, A;2.Z))-
On the other hand, Lemma 3.1 and (5.12) imply
0= <A,szi, Zy=(A;27Z,,2Z;) fori#]j.

Combining this with (5.14) we find
(5.17) A;,Z, EDDV,.
Since 4;, Z, € V, by (5.14), equations (5.16) and (5.17) give ¢ = 0. This is a
contradiction.
From Lemmas 5.3 and 5.6 we immediately have the following.

Lemma 5.7.. Let N be a CR-submanifold with semi-flat normal connection in
M™(c), ¢ # 0. Then for any x € N, there is a unit normal vector qj € v_ such that

(5.18) A4, X=0, A,Z=AZ,
(5.19) 4,=0

for any vectors X in D, Z in 9 _, and & in v, with (£, 1y= 0.

Lemma 5.8. Let N be a CR-submanifold with semi-flat normal connection in
M"(c), ¢ # 0. If X is nowhere zero on N, then N is mixed foliate.

Proof. Under the hypothesis, Lemmas 5.4 and 5.7 imply that N is mixed
totally geodesic.

For any vector fields X, Y in &, Z in 9+, and £ in T+ N, equation (2.9) of
Codazzi gives

R(X,Y:Z,8)=(o([X. Y], Z), &)
+{o(X,vyZ) —a(Y,vxZ), £).

In particular, if we choose £ to be the vector 7 of Lemma 5.7, we can reduce
this to

0=(o([X. Y], Z), my=N[X,Y], Z2)
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by applying (2.6) and Lemma 5.7. Since A # 0, this shows that the holomor-
phic distribution is integrable.

Lemma 5.9. Let N be a CR-submanifold with semi-flat normal connection in
M"(¢), c 0.

(1) Then \ is constant, and for any vectors X, Y in TN and Z in D" we have
F(R(X,Y)Z)=0o(X, PVyZ) — o(Y, PVyZ)

+X{(Y, ZYFX — (X, Z)FY},

(5.21) DyJZ =FvyZ+ NX, Z)J7,

(2) If A\ = 0, then N lies in a totally geodesic complex submanifold M"*?(¢) of
M™(c) as an anti-holomorphic submanifold. .

(3) If A # 0, then N is a mixed foliate CR-submanifold with fD7 = 0.
Proof. For any vectors X, Y in TN, and Z in D, we have

~A; X + DyJZ=JVyZ + o(X, Z).

(5.20)

Thus

(5.22) DyJZ=FvyZ+fo(X,Z).
By applying Lemma 5.7, this gives

(5.23) D, JZ=FvyZ+ NX, Z)J7.

Therefore by considering the normal component of v, DyJZ we obtain

DyDyJZ = Dy(FvyZ) + X(NY, Z))J7

(5.24) ! _
—NY, ZYFX + MY, Z)fDy .

On the other hand, by equation (3.9) of [4] and Lemma 8.1 of [4] we have
Dy(FvyZ) = fo(X,VyZ) — o( X, PVyZ) + F(V4VyZ).
Substituting this into (5.24) we obtain
DyDyJZ = fo(X,VyZ) — o( X, PVyZ) + F(VyVyZ)
+X(NY, Z2))J7 — XY, ZY{FX — fDy7}.
Thus the normal curvature tensor R is given by
R (X, Y)JZ=F(R(X,Y)Z) + fo(X,VyZ) — fo(Y,VyZ)
—o(X, PvyZ) +o(Y, PvyZ) — N[ X, Y], Z)Jq
+ {X(NY, Z)) = Y(MX, Z))}q
—N{(Y, ZYFX = (X, Z)FY}
+A{(Y, Z)fDyn — (X, Z)fDy7n }.
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By applying Lemma 5.7 this gives
R*(X,Y)JZ=F(R(X,Y)Z) — M{PX, PvyZ)—(PY, P,Z)}J7q
—o(X, PVvyZ) + o(Y, PV,2Z)
+ {(XN)(Y, Z)— (YAX(X, Z))J7
(5.25) — N{({Y,ZYFX — (X, Z)FY}
+AM((Y, Z)fDy7 — (X, Z)[Dyi ).

It follows from Lemma 5.7 that both o(X, PVv,Z) and o(Y, Pv4Z) lie in
JD* . Since R* (X, Y)JZ = 0 by (5.1), equation (5.25) gives (5.20) and

(526) (XA)Y, Z)— (YAKX, Z)=A{(PX, Pv,Z)— (PY, PVxZ)},
(5.27) (Y, Z)Dyii = (X, Z)fDyii} = 0.

If N is a complex submanifold of M™(c), then ) = TN and » = T+ N.
Lemma 5.5 shows that N is a totally geodesic complex submanifold of M *(c).

Now we assume that N is not a complex submanifold. We have dim g 0" = p
> 0.

Case (a). If p =0, then we have Imo C J%* . Moreover, for any vector
fields X in TN, Zin D , and £ in », Lemma 5.7 gives

0="{(0(X,Z),t)=(VyJZ, JE)=(DyJZ, J).

Since this is true for all £in », JD* is a parallel normal subbundle. Because the
first normal spaces of N lie in J&™ , the fundamental theorem of submanifolds
shows that N lies in a totally geodesic complex submanifold M"*2(c) of
M™(c). In this case, N is an anti-holomorphic submanifold of M**7(¢).

Case (b). If A =0, then N = {x € N|A(x) # 0} is an open nonempty
subset of N. Lemma 5.8 tells us that each component of N’ is a mixed foliate
CR-submanifold M™(c), ¢ # 0.

If ¢ > 0, then N is totally real (Lemma 4.3). Thus (5.26) gives

(5.28) (XANY, Z)— (YA X, Z)=0,

for any vectors X,Y in TN, and Z in " . Because dimg D} = dimg N =2
and A? is differentiable, (5.28) implies that A is a nonzero constant on N. Thus
by (5.27) we get fD = 0. '

If ¢ <0, then Proposition 4.4 and Lemma 5.8 show that dimg D =p > 1.
Thus for any unit vector Z in " there exists a unit vector W in 9+ so that
(Z, W)= 0. From (5.26) we find

(5.29) Z(X)=0 forZ e,
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Let X and Z be any unit vector fields in ) and " respectively. Then (5.26)
gives

(5.30) X(A)*= 20X, V,Z).
On the other hand, for such X and Z we have
(X, V2ZY=JX, V,JZ)= ~(A,,Z, JX)= —(a(Z, JX), JZ).

Thus by using (5.30), Lemma 5.8, and the continuity of A> we get X(A?) =0
for any vector X in 9. Combining this with (5.29), we conclude that A is a
nonzero constant on N. The equation fD% = 0 then follows from (5.27).

Lemma 5.10. Let N be a CR-submanifold with semi-flat normal connection in
M"(c), ¢ % 0. If A # 0, then the sectional curvature of N satisfies

(5.31) K(ZzAw)=XN.
for any orthonormal vectors Z, W in D+ .

Proof. Let N be a CR-submanifold with semi-flat normal connection in
M"(c), ¢ # 0.If A # 0, then N is mixed foliate (Lemma 5.8). For any vector U
in TN, PU € 9. Thus for any orthonormal vectors Z, W in 9D+, (5.20) of
Lemma 5.9 gives

F(R(Z,W)Z) = -NFW.

From this we obtain (5.31).

Now we give the following classification theorem.

Theorem 5.11. Let N be a CR-submanifold in a complex-space-form M"(c),
¢ # 0. Then N has semi-flat normal connection in M™(c) if and only if N is one
of the following:

(1) a totally geodesic complex submanifold M"(c),

(2) a flat totally real submanifold of a totally geodesic complex submanifold
M?(c) of M™(c),

(3) a proper anti-holomorphic submanifold with flat normal connection in a
totally geodesic complex submanifold M"*?(c) of M™(c),

(4) a space of positive constant sectional curvature immersed in a totally
geodesic complex submanifold MP*(c) of M™(c) with flat normal connection as
a totally real submanifold.

Proof. Let N be a CR-submanifold with semi-flat normal connection in
M™(c), ¢ # 0. If N is a complex submanifold of M"(c), N is a totally geodesic
complex submanifold of M™(c) (Lemma 5.5). Thus N is itself a complex-
space-form M*(¢). '

Assume that N is not a complex submanifold of M™(c). Then p > 0, and
there exists a unit normal vector field 7 satisfies (5.18) and (5.19) for some
constant A (Lemmas 5.7 and 5.8).
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If A = 0 and N is totally real, (5.20) shows that N is flat.

If A =0 and N is neither complex nor totally real, then N lies in a totally
geodesic complex submanifold M**2(¢) as an anti-holomorphic submanifold
(Lemma 5.9). In this case, (5.1) implies that NV has flat normal connection.

If A # 0, Lemma 5.9 gives

(5.32) Dy €JD*
for any vector X in TN. On the other hand, Lemma 5.7 also gives
(5.33) DyJ = V,J7 = -JA; X + JDyi.

From Lemma 5.7 and (5.32) we see that 4;X € Q- JDyn € TN. Thus (5.33)
gives
(5.34) D7 =0.

Now, since N is mixed foliate (Lemma 5.8), the holomorphic distribution is
integrable. Let N7 be a leaf of . Denote by A7 and D7 the second
fundamental tensor and normal connection of N7 in M™(c) as before. Then
we have

~ALX + D{ij = v, = -A; X + Dyf = 0for X € TN7

by virtue of (5.34) and Lemma 5.7. This shows that 7|y~ is parallel in the

normal bundle of N7 in M™(¢). This contradicts a theorem of [5] unless N is

totally real in M™(c). If N is totally real, N is of positive constant sectional

curvature A? (Lemma 5.10), and N has flat normal connection (Definition 5.1).
From (5.33) and (5.34) we find

(5.35) DyJiq = -JA; X €JD*

for any vector X in TN. Therefore by (5.21) of Lemma 5.9, (5.34) and (5.35),
we see that p=JDt ®Span{#, J4} is a parallel normal subbundle, and
p 2 Imo. From these we conclude that N lies in a totally geodesic complex
submanifold M?%(¢) of M™(¢) as a totally real submanifold with flat normal
comnnection.

The converse of this is trivial.

Remark 5.1. From Lemma 5.9 it follows that the assumption of compact-
ness in Theorem 2 of [7] can be omitted.
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